Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Emerg Microbes Infect ; 10(1): 2199-2201, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1505680

ABSTRACT

We report pilot studies to evaluate the susceptibility of common domestic livestock (cattle, sheep, goat, alpaca, rabbit, and horse) to intranasal infection with SARS-CoV-2. None of the infected animals shed infectious virus via nasal, oral, or faecal routes, although viral RNA was detected in several animals. Further, neutralizing antibody titres were low or non-existent one month following infection. These results suggest that domestic livestock are unlikely to contribute to SARS-CoV-2 epidemiology.


Subject(s)
COVID-19/veterinary , Host Specificity , Livestock/virology , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Camelids, New World/virology , Cattle/virology , Chlorocebus aethiops , Disease Reservoirs/virology , Goats/virology , Horses/virology , Host Specificity/immunology , Humans , Nasal Cavity/virology , RNA, Viral/analysis , Rabbits/virology , Rectum/virology , Respiratory System/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sheep/virology , Species Specificity , Vero Cells , Virus Shedding , Viscera/virology
2.
Emerg Microbes Infect ; 10(1): 1-7, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-990475

ABSTRACT

Transmission of severe acute respiratory coronavirus-2 (SARS-CoV-2) between livestock and humans is a potential public health concern. We demonstrate the susceptibility of rabbits to SARS-CoV-2, which excrete infectious virus from the nose and throat upon experimental inoculation. Therefore, investigations on the presence of SARS-CoV-2 in farmed rabbits should be considered.


Subject(s)
COVID-19/transmission , Rabbits/virology , SARS-CoV-2/isolation & purification , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/etiology , COVID-19/veterinary , Disease Susceptibility/veterinary , Female , HEK293 Cells , Humans , Virus Shedding
3.
J Proteome Res ; 19(11): 4543-4552, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-713407

ABSTRACT

A model to predict the relative levels of respiratory and fecal-oral transmission potentials of coronaviruses (CoVs) by measuring the percentage of protein intrinsic disorder (PID) of the M (Membrane) and N (Nucleoprotein) proteins in their outer and inner shells, respectively, was built before the MERS-CoV outbreak. With MPID = 8.6% and NPID = 50.2%, the 2003 SARS-CoV falls into group B, which consists of CoVs with intermediate levels of both fecal-oral and respiratory transmission potentials. Further validation of the model came with MERS-CoV (MPID = 9%, NPID = 44%) and SARS-CoV-2 (MPID = 5.5%, NPID = 48%) falling into the groups C and B, respectively. Group C contains CoVs with higher fecal-oral but lower respiratory transmission potentials. Unlike SARS-CoV, SARS-CoV-2 with MPID = 5.5% has one of the hardest outer shells among CoVs. Because the hard shell is able to resist the antimicrobial enzymes in body fluids, the infected person is able to shed large quantities of viral particles via saliva and mucus, which could account for the higher contagiousness of SARS-COV-2. Further searches have found that high rigidity of the outer shell is characteristic for the CoVs of burrowing animals, such as rabbits (MPID = 5.6%) and pangolins (MPID = 5-6%), which are in contact with the buried feces. A closer inspection of pangolin-CoVs from 2017 to 2019 reveals that pangolins provided a unique window of opportunity for the entry of an attenuated SARS-CoV-2 precursor into the human population in 2017 or earlier, with the subsequent slow and silent spread as a mild cold that followed by its mutations into the current more virulent form. Evidence of this lies in both the genetic proximity of the pangolin-CoVs to SARS-CoV-2 (∼90%) and differences in N disorder. A 2017 pangolin-CoV strain shows evidence of higher levels of attenuation and higher fecal-oral transmission associated with lower human infectivity via having lower NPID (44.8%). Our shell disorder model predicts this to be a SARS-CoV-2 vaccine strain, as lower inner shell disorder is associated with the lesser virulence in a variety of viruses.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections , Eutheria/virology , Intrinsically Disordered Proteins , Nucleocapsid Proteins , Pandemics , Pneumonia, Viral , Animals , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Pandemics/veterinary , Phosphoproteins , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Pneumonia, Viral/virology , Rabbits/virology , SARS-CoV-2 , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL